

GUIDANCE NOTE: FOR END-POINT ASSESSMENT

ORGANISATION USE ONLY
AMENDED: 1st November 2021

Software Developer (ST0116)

END-POINT ASSESSMENT ADDITIONAL GUIDANCE ON SOME OF THE
OCCUPATIONAL BRIEF COMPETENCY STANDARDS

The following guidance is not intended for training provider use.

The guidance is designed to support End-Point Assessment Organisations (EPAOs) by
providing some clarity to those parts of the occupational brief that have caused uncertainty
when assessing and moderating apprenticeship work.

The table shows individual competency standards and the minimum expected requirements
to pass some of the criteria listed in the occupational brief. It then offers guidance on how this
could be interpreted.

Note that there are other criteria (competency standards) in the occupational brief. This table
focuses on just those competency standards EPAOs felt needed further guidance.

This is indicative guidance only and represents an attempt to develop a shared understanding
of how the competency standards should be interpreted.

The What – what the apprentice has shown they can do

The
Competency
Standard

Definition of the Minimum

Requirement

Examples and

illustrations –

NOT the

curriculum

Comments on
the criteria

Logic: writes good
quality code (logic)
with sound syntax in
at least one

language.

Apprentices can write code to achieve
the desired functionality and which is
easy to read and understand, with
good naming, indentation and
commenting, and applying the
fundamentals of good coding:

• development paradigms (where
this is object-oriented
programming this must include
inheritance, abstractions,
encapsulation, polymorphism)

• software programming languages

• software development tools (IDEs)

• writing programs and methods

• language-specific idioms

• logic and flow-of-control

A wide range of software
development tools
including:

• Integrated

Development
Environments (IDE’s)

 Version control
systems

 Configuration
management
tools

For example, in Java the

ability to code variables

assignment statements

data types conditionals

statements loops arrays

The apprentice is
applying and
demonstrating what
they know and can do
here.

This will be apparent
when assessing the
source code and/or
examples provided in
their portfolio.

Apprentices should be

able to describe this

competence if asked

for further detail in the

interview.

NSAR EQA Guidance Note: Software Developer v1.1 - 1

 Apprentices can apply:

• Elements of programming –

variables, assignment statements,
data types, conditionals, loops,
arrays, and input/output.

• Functions - modular programming
dividing a program into
components that can be
independently debugged,
maintained, and reused writing at
least two reusable functions

• Algorithms and data structures -

classical algorithms for sorting and

searching, and fundamental data

structures.

For example, in Java to
be able to declare and
invoke methods
correctly demonstrate
parameter passing and
returning values
overloading and
overriding.

For example, in Java

demonstrate the use of

collection classes the

difference between

standard arrays and

collection classes.

For example, they

could be asked to

describe the principles

applied to the

language(s) they use to

meet the logic criterion

in the occupational

brief.

Design: can create
simple data models
and software designs
to effectively
communicate

understanding of the

program, following

best practices and

standards

Can take a high-level design and can
interpret and convert the design into
simple data models and/or
programme modules to communicate
it to others.

Can apply software design
methodologies (e.g., structured or
object-oriented).

Can use standard design notation such
as UML.

Can apply data modelling.

Can apply reconcile design against
analysis models.

Can design software solutions to meet
requirements.

• Software design
tools

• Data modelling
tools

This can be read as
‘Can reconcile design
against analysis
models’.

Analysis: can

understand and

create basic analysis

artefacts, such as user

cases and/or user

stories.

Can take a variety of data and business
requirements and convert them into
basic analysis artefacts to understand
and can clarify the intended use of the
proposed software

Can identify and represent required
functionality (e.g. use cases)

Can identify and represent activity
workflow (e.g. activity diagrams).

• Software analysis
tools

• Case development
tools

• Activity diagram

tools

For ‘Can identify and
represent required
functionality (e.g. use
cases), this should read:
Can identify and
represent required
functionality (e.g. user
cases).

 NSAR EQA Guidance Note: Software Developer v1.1 - 2

